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ABSTRACT

In these few pages, reader you will find

Complete a theory, from McMillan does it stem,

To satisfy the criticizing mind.

The topic network's pure foundation treats.

With definitions it begins, such is system;

Then n-port properties one here soon meets.

For general networks are such defined;

Then comes the distributional extension

For special type n-ports this holds refined.

The end has exponential variables to greet,

With generalized descriptions linear, the mention,
And paradoxes as an unsolved feat.
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I. INTRODUCTION

Recently much interest has centered on obtaining a rigorous

theory of networks and their properties. Such interest seems to have

been originated by McMillan and RaisbeckI* and has culminated in

several detailed theories. Of especial note are the results of

Youla, Castriota and Carlin and the extensions of Zemanian. However,

although these are quite rigorous, they are, we feel quite complicated

for what is required. Further these treatments are strictly limited

to linear, time-invariant, passive networks and even in this case are

open to several interpretations which can lead to contradictory

results. 3

Here we present a basic theory of what we believe to be the most

general types of conceivable networks. For this we abandon the

operator concept, which we feel is more appropriate to control system

studies, and revert to the concept of allowed pairs, whose origin can

be traced to McMillan. The program is to define a system, a network,

and an n-port in terms of infinitely differentiable functions ot

support bounded on the left. The major properties of such n-ports are

then defined, such as linearity, time-invariance, passivity and

solvability. Such physical networks are then extended to idealized

networks and more generalized variables through the use of the theory

of distributions. Once this is done, general descriptions of a large

class of linear, time-invariant networks can be given by using

exponential variables. At this point the (bilateral) Laplace transform

approach can be used in the standard manner.

The reader is assumed to have a working knowledge of elementary

matrix theory, as well as a small knowledge of the theory of distribu-

tions. The latter however, isn't used until Section IV, and it is

available in a companion report.4 Points which are of interest, but

supplementary to the main portion of the theory are expanded upon -

the appended notes.

* The superscript numerals refer to the notes at the end of the report.
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II. SYSTEM, NEORKS & n-PORTS

We begin with the notions of systems and networks. Consider a

collection of physical elements which are connected together to form

some device. At this stage the entities are not restricted, they may

be electrical, mechanical, thermodynamical, etc. For the present it

is sufficient to look at the device at the access points, called

terminals, and thus essentially ignore the internal construction. In

general the device will have k such terminals which can be consecutively

labeled YJ, J = 1, ... , k, where k may in fact be infinite. In

order to obtain a mathematical model, we associate with the device two

column vector variables, f(t) and £(t), of k entries, with the jth

entry being associated with fj. f and j are called conjugate

variables and are taken such that ?' g is the total instantaneous power

entering the device, here the superscript tilde denotes matrix trans-

position. 5 Several ways are available for choosing the variables.

In the electrical case, choosing f as voltage and g as current, two

possibilities are shown in Fig. 1.

+ 52 - f3

f 2 93+ Y2

ff

92 (9 4 12

0 2

9 1 '1

a) b)

FIG. 1. POSSIBLE VARIABLE CHOICES.
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We will let +k denote the set of real-valued, k-vector,

infinitely continuously differentiable functions of the real tine

variable, t. t <t <a, with support bounded on the left.6 Furthe:r,

let be the same as +k except that the support is bounided on

the left by a fixed constant t, tN may be infinite. For a given
device we will then postulate that tN exists and that 7 f,1 1+k Na

&E !D +k "- Nk; tN is to be interpreted as the creation time of the
i ~ device. This restriction on the variable is a physical one, sin•ce

such quantities appear to be of the type actually measured.8 H)wever,

by a limiting process we will later extend the domain of definition.

Now given a specific device, some constraint, C, is placed upon

the f and the g. We will incorporate in C the fact that f and . must

t be conjugate. For simplicity we will then denote these constraintI requirements by fCc, which can be interpreted as follows. Given an f

which, by virtue of the constraints, is allowed at the terminals,
there is an accompanying set of allowed g's. Thus we can speak of

allowed pairs of variables f, A. The set of all allowed pairs then

serves to completely describe the device, which we define as a

k-access system, 8 . In more precise language, given tNP a system is

defined by7

S=((f, .91 1,1 T +k r 9 NDk ) fCa (1)

Note that although a system may be created at t =, it can't be

excited until some finite time, in this formulation. If the vuriables

are electrical, we call the system a network. For networks we will-

assume f to be a voltage vector. 9 The remaining treatment will be

limited to networks.

As an example consider a resistor 8 of resistance r, which was
10

created with the universe, tN = - We can then apply any current,

ge 0 +1 across the terminals. The voltage is then f = rg and

5r = C[f, gIfe ) +1' f = rg)

The allowed pairs for the resistor are of the form [rg, g] for any

ge T +1"

-3- SE L -63-022



*I 0
in ,I s'Beses the description giwen abcVe yields too much in-

"fati! ar) is &I Svantageous to delete the ext•raneous data. Arformatic. ' , i

many ap 2at -one the tenminals of a retvo 1i are associated in n dis-

joint I s i Lth excitatioas being applied only between the two
termii 'of a pair. If such is the case, we take k even, and it iS

conven t relabel the teti.nmls, calling those for the Jth pair Tand Tn = -, = n k/2. In this situation, if the current entor-"a n V ,h l j a r i a l d a
ing T I elial to the cu.rrent leav.'ng T rhis pair is called a

If all rV Inals occur as ports, the network is called an n-port, N.

For P(• t. only the n-vectors K(t) and _(t) of port voltages and

curreo: a of interest. The var• ablea for an n-lprt will be taken

as sb Ir Fig. "a) with Fig. 2b, tl.g a conveniert representatioa.

T T2

v2 I

+ 0.'-

' T'
•n + b)

T'
a)

FIG. 2. n-PORT VARIABLES.

l' e network of Fig. la), for example. becomes ,•n n-port if k 2n
anA choose v = f 2J- 1' 21 = g , for

Car•" •LO ver ilhe previous language we characterize an n-port by

la + n' (2)

The 7l1lowing examples serve to dr; ine the symbolism for son•
SsilAnt and interesting 1-port rid 2-port N.

3-C' a -4-



a) b) C)

FIG. 3. REPRESENTATIONS FOR EXAMPLE 1.

Example 1:

a) The linear, time-invariant, resistor, capacitor, and inductor

are illustrated in Fig.3a). The resistor has allowed pairs

[ri, i] for any ie 9+1 . The capacitor is described by

[v, d(cv)/dt] for any ve T+1. An equally valid description, if

cjO is i(x)dx, i] for any ie )+1 . Dually the inductor has

[d(ii)/dt, i] for any ie 9+1. Here r, 1, c are all real numbers.

b) The describing equations of the ideal transformer of Fig. 3b)

are

i2 = -Ti 1

with the turns ratio T real. With v2 ,ile D but otherwise

arbitrary, the allowable pairs are (v24 T1 , il[l ]. Note that v

and i are not related and that not all v are allowed; only those

with v1 = Tv2 are acceptable. For each allowed v there are an

infinite number of allowed i. Since •i = 0, the total power input

is zero, and, when T = 0, port one is a short-circuit while port

two is an open-circuit.

c) The ideal gyrator of Fig. 3c) is described by

I= 7i2

V2= -7iI

with the gyration resistance, 7, being real. 1 2
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I

y L7iI' [, ], for any je 0+2' are the allowed pairs. As with

the transformer, the total power input is identically zero. If

y = 0, both ports are shorts, while, if we allow y m, both ports

are opens.

The networks of Example 1 are all idealizations of actual physical

elements. The inclusion of the ideal transformer is a convenience

which allows a comparatively simple mathematical treatment. However,

their use in physical structures is to be avoided since realizations

require closely coupled coils with extremely large self and mutual

inductances. Ideal gyrators have been practically realized only for

microwave networks;13 their inclusion is for completeness.

In contrast to the networks of Example 1 there is a whole class

of degenerate networks which must be considered, in spite of the fact

that they seem to bear no relationship to actual physical devices.

Typical of these are the nullator, for which the only allowed pair is

[0, 0], and the norator, which is described by [v, i] with v arbitrary
14

and i arbitrary but independent of v. These are, respectively,

represented by the symbols of Fig. 4a) and b) where realizations in

terms of the elements of Example 1 are also given. Such degenerate

networks are often valuable for illustrating ideas, checking results,

and investigating the generality of a concept.

a) b)

FIG. 4. NULLATOR AND NORATOR.

In general we will limit the treatment to n-ports, in contrast

to k-terminal networks. Although this appears to put a restriction

on the generality of the theory, such is not the case, since we are

allowing the use of transformers. Thus, Cauer has shown how any

k-terminal network can be made equivalent to a (k-l)-port. 1 5 The

procedure is illustrated for k = 4 in Fig. 5 from which the extension

SEL-63-022 -6-



to arbitrary k should be clear.

t2 3

a) b)

FIG. 5, CONVERSION OF 4 TERMINAL NETWORK TO A 3-PORT.

If, in Fig. 5, the variables are chosen as indicated, the network in

a) is described by the same relationships as the 3-port in b).1 6 The

process is somewhat familiar from transistor theory where the trans-

formers are omitted when treating the three-terminal transistor as a

2-port.

-T- sEm-63-022
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III. PROPERTIES OF n-PORTS

2he description of N by the use of the allowable pairs is

extremely general. Using this generality, we can define some specific

properties in such a manner as to be applicable in the widest possible

context. After this is accomplished we can extend the notion of an

n-port and obtain more tractable descriptions for several important

classes of n-ports.

We begin with the concept of linearity which is conveniently

phrased in the [v, i] Janguage. 17

Definition 1:

N is linear, if for every [V1 , i1 1, [v 2 , i 2 ]eN and all real

constants, a,

(H) [avl, alleN (homogeneity)

(A) [_vl+v2, il+i 2 ] N (additivity)18

Physically the definition means that at the ports superposition

holds. If N is not linear it will be called nonlinear. Apparently

every physical N is actually nonlinear. At best any existing N will

satisfy definition 1 for only some pairs and some a. Linearity is

then an idealization which is strictly only valid in practice over

some range of the variables. In spite of this, most of the theory

will be limited to linear N. This is justified by the fact that a

first approximation to a nonlinear N is a linear N. Further, very

general results are available for linear N, while results for only

specific nonlinear networks can be found.

The N of Example 1 are all linear while the network described by

[+I', i] is not a linear N, if i is arbitrary. For control systems

an important nonlinear network is the 1-port defined by the curve of

Fig. 6a) and called the saturator. Another nonlinear N is the network

of Fig. 6b) for which

(0, E/r] + [v, (v+E)/r] = [v, (v+2E)/r] l [v, (v+E)/r]

SEL-63-022 -8-



with E a fixed function in 1) 1. Here the fourth and the first two

pairs are allowable while the third one is not.

V E V

V v

0- 4 -

f fi-

v00

a) b) c)

FIG. 6. NONLINEAR N.

Some interesting 1-ports show that homogeneity and additivity can be

separately violated. Thus the N for which v and i take on only integer

values for t > to, but for which vand i are in Ji) for all t,

satisfies the additivity requirement but not the homogeneity one. The

double-valued 1-port described by the curves of Fig. 6c) possesses

homogeneity but not additivity.I1

The ideal diode of Fig. 7a) is another useful nonlinear N.

Using it in the linear network of Fig. 7b) shows that a network

constructed from nonlinear elements need not be nonlinear. 2 0

q=
0 r0 0 SM v r i

a) b)

FIG. 7. THE IDEAL DIODE.

In passing, it is worth point out that the set of allowed pairs

for a linear N forms a vector space over the field of real numbers,

if we define
2 1

-9- SEL-63-022



a[_, i] = [av, ai]

([V, -i] + [X2, 12' - [il+Z2 , -i1+I1h

The second concept of interest is that of time-invariance.

Physically we would like this to mean that no elements inside N have

parameters which change in time. In terms of the terminal behavior
22

this is best phrased in the following manner.

Definition 2:

N is time-invariant, if for every [v, i]eN there is a [o, i.o]eN

such that, for every real, finite, constant r > 0,

_v(t), i(t)] = [IV(t+.r), i(t+¶)I (3)

In this we are obliged to take T > 0 since, in general,

v TNn" Pictorially v and v0 are related as shown in Fig. 8.

for 
1

tt t + r t

FIG. 8. VOLTAGES USED IN DEFINITION 2.

If N is not time-invariant, it is only logical to call it time-varying

or time-variable. The networks of Example . are all time-invariant,

if the parameters are independent of time. Thus for the capacitor any

[v(t), d(cv(t))/dt] has [v(t-T), d(cv(t-T)/dt] allowed for any vy e+1

and any T > 0, when c is a constant. However, if c = t then

[v(t), d(tv(t))/dt] = [vo(t+'r), io(t+T)]

implies by a simple change of variable

v0 (t) = v(t-T)

io(t) = d((t-T)v(t-T))/dt

But for T > 0 this i is not allowed since such a vo requires a

current of the form

SEL-63-022 -10-
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f
d(tvO(t)]/dt = d(tvt-T))/dT

Thus if c = t the capacitor is time-varying, which lends some

credibility to the definition.

As with linearity, time-invariance is an idealization which

apparently can never occur in nature. This statement is justified by

the fact that most networks must be built. Although it is possible to
10

conceive of networks existing since t = -, as Shelley's universe,

the most interesting devices are presently being conceived. However,

a study of time-variable networks appears to be in its infancy. If N

is time-invariant, it can be extended from ) +nt'lNn to D+n by

assuming 3) to hold for finite T > 0.

Another concept of importance is that of passivity. This notion

is somehow tied to the presence of internal sources, however, the

negative resistor shows that conceptually, at least, the source idea

isn't quite what is desired. Passivity is best defined in terms of
energy. 23

Definition 3:

N is passive if for every [v, ikeN and every finite t
•t

8(t) -- (T).i()dt > 0 (4)

If N is not passive it will be called active. In contrast to

linearity and time-invariance, passivity can actually occur in nature.

The transformer and the gyrator, as well as the nullator, are passive

networks for which e(t) = 0.24 If the describing parameters of the

resistor, capacitor, and inductor are positive constants, these are

passive N. For instance the capacitor has, recalling that v(-s) = 0,

e(t) = cv(c cv (t)/2

Note that if c < 0, the capacitor is an active network. The passivity
of a given device will sometimes depend upon the point of view taken

when defining the mathematical model. For instance, if only the

small signal behavior of a transistor is considered, the transistor

is active. However, if the bias sources are considered as being

SEL-63-022



eicternally connected the transistor is passive.

Another property which has been greatly ignored, but whose

inprtance has been pointed out by Youla, is that of solvability. 2 5

Definition 4:
N is solvable if for every 2ea i+n e T Nn the equation

e=v+i

is satisfied by a unique [v_, i]eN

Here we can consider a new i.-port, called the augmented network,

N., assumed created at tN, as shown in Fig. 9, with [, i]eN

aF a

I II I

0 I
-N

+ n

FIG. 9. AUGMENTED NETWORK.

26

Solvability doesn't seem to be an idealization, assuming it, a

matrix description will be guaranteed in the linear, time-invariant

case. The open, the short, and the passive networks of Eample 1 are

all solvable while the nullaor, norator and negative unit resistor

are not solvable.

If N has any of the properties of linearity, time-invariance or

passivity then N a has the sam properties.27 This is not the case

for solvability as is seen by the original N being a minus two ohm

resistor. However, if N is passive a"d solvable then Na seems to also

be solvable.

Although the notions of linearity, time-invariance, passivity and

solvability are the most fundamental concepts with which we will work,

there are several others of interest. Among these is that of

SmI-63-022 -12-



I28
reciprocity which stems directly from Maxwell's equations.

Physically a reciprocal network should have the voltage response due to

a current excitation independent of an interchange of response and

excitation points. Mathematically this is formulated in the following
29manner, where the normal level asterisk denotes convolution, in this

case of two vectors.

Definition 5:

N is reciprocal if for every CVl,. 1 ], [Z2 , i 2 ]N we have

-•l-2=-2l (6)

The difference between the power input to a network and the

forms in (6) should be observed. In the latter, variables for the

first measurement are convoluted by their conjugates for the second

measurement. In contradistinction to the use of the words time-varying,

customary usage requires that the class of nonreciprocal networks

contains the class of reciprocal networks. It also appears that

reciprocity is an idealization.
A transformer is a reciprocal 2-port, since

[TV21I v2l]*[il 2  j= 0 = 2[Tv
2, v22]ili]

In contrast, the gyrator is a linear, passive 2-port which is not

reciprocal, if y ý 0, since

[Yi 2 1 _Y11 7 (i21i2 -i 1 i2 2 = Y'2i2 , -Y12

1 .il"] 2 21 1- t) 2 2

There are many linear 2-ports which are not reciprocal, but only one

such 1-port, the norator. The ideal diode of Fig. 7 is a 1-port which

is nonlinear, time-invariant, passive, solvable, but not reciprocal.

The notion of causality is of philosophical interest. Physically

this means that the application of some variables at time t causes
0-

other variables to appear at time t, > to. We believe that by any

mathematical theory it is impossible to tell what is a cause and what

is an effect. Thus, we limit our ideas to the concept of antecedance

-13- SEL-63-022



which is sometimes confused with causality. 30

Definition 6:
N is antecedal if for every t > tN there are [0, i(t)], [v(t), O]eN

for -m < t < toP and for every such pair

a) [0, i(t)]eN implies i(t) = 0 for -m < t < to

b) [v(t), O]1N implies v(t) = 0 for -w < t < to

The resistor, inductor, capacitor and nullator are all antecedal,

while the transformer, norator, opens and shorts are not. A concept

somewhat related to that of antecedance is that of single-valuedness.

Definition 7:

N is single-valued if every [v, i]eN has i uniquely determined by

v and v uniquely determined by i.

Typical single-valued networks are the resistor, inductor, nullator

and gyrator. The saturator, transformer and norator are not single-

valued. Clearly every antecedal N is single-valued but the converse

need not be true, as is seen by Fig. 6b). As we shall see, the

restriction of variables to i rules out the non-antecedal and non-+

single-valuedness of some networks.

Almost every synthesis method is based upon the synthesis of loss-

less networks and hence the next definition is of some importance. 3 1

Definition 8:

N is lossless if

S) N is solvable and

P) N is passive and

L) for everyeg +n ) ) L2n

P = L (T)_(T)dT = 0 (7)

Here e is v + i as in (5). Relaxing the L2 n requirement causes trouble,

since variables which don't vanish at infinity can give a finite, non-

zero e(-). The passivity requirement is a convenience which will be

used to assure that v and i will lie in L2n if e does. Relaxing the

passive requirement allows the active capacitor with c = v as a lossless

SEL-63-022 -14-



network; however, the capacitor c - v would still not be allowed since

L •-3v 3 dv need not exist for eeLT2 1 . The linear, passive inductor and

capacitor, as well as the gyrator and transformer, are lossless, while

the nullator and resistor are not. A network constructed only of loss-

less elements need not be lssless, as is seen by observing the inductor-

capacitor equivalent circuit of an infinitely long transmission-line,

which has a purely resistive input impedance.

-15- MIL-63-022



IV. EXTENSIONS

Using the theory developed so far there are idealized situations

which can't be considered. For instance we can't as yet excite with

unit step functions or impulses, or handle initial conditions in the

customary way, and a perfect DC battery doesn't qualify as a network.

We therefore now relax some of the physical constraints and cover

these and similar cases by taking suitable limits.

We will let D ' denote the real-valued n-vector distributions and
n

I)' be such distributions with support bounded on the left, •Dn is
+nNn

the same as :D'' except the support is bounded at tN. All the desired

results will then follow from the fact that D is dense in both "D'
+n n

and •D' that is, any distribution in T' or D' is a limit of a+n n +n 32
sequence of infinitely differentiable functions in D

For example the idealized network of Fig. lOa) results by taking

the limit of a sequence of networks of the type of Fig. 10b) where, as

a distributional limit

Suj =u, u + u =unit step

A typical uj is shown in Fig. 10c)

r

r Eu(t) Eu10t)

a) b)

- 2/i -1/i

c)

FIG. 10. LIMITING NETWORKS

sE-63-022 -16-



If in Fig. 10c) we replace the points -1/i and -2/J by -J and -2J,

then when the limit is taken, u(t) is replaced by the constant 1 for

all time. This then allows consideration of perfect batteries. Since

initial currents in inductors and voltages can be considered through

the use of unit step functions, the above limiting process allows the

standard procedure for incorporating initial conditions. The smooth

functions of Fig. lOc) physically mean that such smooth variables, are

the ones actually appearing at terminals when a finite network is

constructed.

In general it is hard to state exactly when extensions to dis-

tributional variables can be made. For instance the nonlinear resistor

r = i can not be extended to impulsive currents i . 5, since 52 is

undefined.33 However, in the linear, time-invariant and solvable case,

to which most the remainder of this work is restricted, we can always

extend Na, and hence N, to distributional e and i in the following way.

By the solvability of N, if a sequence (ej) has e -O then v -- i

and these tend to a unique value. This value can only be zero, since

by linearity [0, O]1N. Consequently, if e - then i - and Na is said

to define a continuous mapping, defined as

.1 = 9aC-e]

Now, exciting with (e(t-r)-e(t))/¶, the current becomes by linearity

Se(t+Te(t)] = [e(t+T)"- 'N_[e(t)])/¶

But by time-invariance, for T > 0, we can write this an (i(t+T)-i(t))/T.

Taking the limit as T-0 we see that

di/dt = Na [de/dt]

In other words the continuous mapping !a commutes with the operation

of differentiation. Considering any eq T' Nn' by the denseness-- +n NJ

of +D n in D' Th• ' we can find a sequence of egel )Nn +n Nn +n Nn
such that e -se. Applying these e to N yields i el) +n ( )j- +n Nn' and,
by the continuity of the mapping, i-oi with if . By first re-

- Nn Bfrte
stricting e to et nT'q n, where el is the set of n-vector distribu-

Nn n n
tions of compact support, we see with Schwartz, since Na is continuous

a
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and commutes with differentiation, that Y can be represented by an
34 a

nxn matrix, convolution operator, ya".

That is

i = y--*e (8a)

= (b1n-ya]*e (8b)

where 5 is the unit impulse and 1 is the nxn identity matrix. Byn
choosing the entries of e to approach impulses, we see that the entries

Of Ya are in Din and, therefore, have support bounded on the left, if

t > -. We then extend (8a) from etnDkn) P' to any e for which the

convolution is defined. If the columns of Ya are in 5n' which is+n'

always the case if tN > -w or, as we will soon see, if N is passive,

then (8a) can be used for any ee __, in which case iT ID' results.-- +n - +n

Of course this extension coinsides with the one obtained by letting

T < 0 in Eq. (3) when ee +n .35

To illustrate this procedure we consider a familiar example.

Example 2:

Consider a linear, time-invariant inductor. The augmented

network is described by

e = i+Xdi/dt

We can extend Na from +) to unit step functions by either

solving this for e of the form of Fig. lOc) and taking a limit

or by inserting unit step functions directly in the differential

equation.

But

5(t) = " (ju(t)-ju(t-l/J))

and thus we apply

e = ej = ju(t)-ju(t-l/j)

to the differential equation. This gives

i (t) = J(u(t)-u(t-l/j)-e-t/lu(t)+e('t+l/J)/Iu(t-l/j))

By a power series expansion

e('t+I/i)/i = e-t/e+(I/JA)eJt/2+ order (1/j 2)
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Consequently, since e tl08(t) = 8(t),

Si = (l/1)e-t/Au(t) = ya(t)

Using this with (8a) gives i for any eel+," Note that the

above differential equation for i allows the solution

i= -(i/•)et/2u(-t) when e = B. This solution is ruled out,

however, by our extension procedure.

if tN ,then apparently e D'+n need not imply that i 1+n"
For instance the "network" for which i takes the form of Fig. ii,

when e e+1 and e3-', has e = 5 accompained by i = u(-t) = ya"

1 0

t

FIG. 11. FUNCTIONS CONVERGING TO u(-t).

Such a network, if it is actually a network, presents somewhat of a

paradox, since inserting suitable e -. into (8a) shows that the extend-

ed network has i (-•)#O. That is, the original network and the extend-

ed network wouldn't coincide in this case; it appears than that

solvability essentially doesn't hold here.

Let D ' be the set of real, n-vector distributions which areL2n
finite sums of derivatives of L2 n vectors. If N is linear, time-

invariant, solvable and passive, then, as we now show, e2la• implies
2n

ti,ve V . This is seen by noting that if ee i' then Ct*eL 2 n for
2n 2n

a any scalar in the set D of infinitely differentiable functions of
compact support.3 6 Now *e = Cv_4*i and Coe can by approximated
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arbitrarily well by ejg )+n and hence so will be aN-v and 0*i by

solvability and the continuity of a linear, time-invariant mapping.

But

f' (0)(a*e)d_ _ = 0t .f_ L

2 f (9)

By assumption the term on the left is finite and non-negative. The

same holds for the last term on the right, by passivity and the fact

that the terms under the integral are approached arbitrarily closely

by +n vectors. Consequently the other terms, which must be non-

negative, are finite and ee %, does imply i, ve T, . This result
SL2  2n

will show that the Laplace transform of ya is analytic in the right-half

plane. We now turn to such considerations.

Consider a linear, time-invariant, solvable N with its domain of

definition extended as far into 9D' as possible by (8). Let the
n

voltage of N bea

k= ReEePt u(t+k)

for k real, p = a+Jw a fixed complex number, j = /-l, and E an arbitrary

complex constant n-vector; of course Re denotes the "real part of".

The resulting current is given by the convolution of (8a) as

i1k(t) = Re( ya(r)e" ut-T+k)dT]_Ee ]

By linearity the real part can be taken at any stage. For convenience

we then drop the Re and assume it to be inserted at the end of any

calculation. Taking the limit as k- we get

i(t) = f ya(r)e'PTd-)e(t) = Ya(p)_e(t) (lOa)

e(t) = Eept (lOb)

This process can only be carried out if the term in brackets, Ya(p),

which is the bilateral Laplace transform,, L[ya]l exists for some p.

In general there will be some a8 < r such that Ya(p) exists for
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a <a <a. Equation (8b) gives a similar result for v; such a

representation holds for v if and only if it holds for i by (8b),
where [a linear, time-invariant N can be extended by

this, or any other, method such that v = Vept and i -- Iept are paired,

then we will call N, _b-reresentable. The above shows that most such

sol,.mble N are Lb-representable, however, some nonsolvable N, such as

the nullator, are Lb-representable. 37

An important class of Lb representable N are the linear, time-
invariant, solvable, passive N. For such N, a1 < 0, r = a , and con-

sequently, in this case Ya(p) is analytic in a > 0. This follows from

the fact, as we saw above, that ee .D yields i L !D . Choosing the.pPL in Z L2n
entrLes of e all zero except for one impulsive entry, we can isolate

any column of ya by i = y *e. The entries for Y. are all zero for
a a-

t < 0 since otherwise, convoluting with ae •D, a = 0 for t < 0, we

would have a*i = ya*(a9e) nonzero for t < 0 which would contradict (9),
all for the above impulsive type of e.38  Thus, for the type of N under

consideration, we know that the columns of Ya are in •D' and zero

for t < 0. By the very definition of V' we can write, where k is

finite, L2n

k
Ya =Z " J(faj )/dtj

with the columns of the nxn matrices f in L2n and zero for t < 0.

Taking the bilateral Laplace transform gives
k

[ya] = Ya(p) aj

By a well-known theorem of Laplace transform theory, each &u[faj] Is

analytic in a > 0, and almost everywhere on a = 0, and by this last

formula for Y the same result holds for Ya(p). 39 That is

exists and is analytic in a > 0 and almost everywhere on a= 0. For

networks with rational Ya(p) this gives a stability result, since it

says that no poles of Ya can lie in the right half-plane.
2

The network for which e = 5 yields i = exp[t ]u(t) is not
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Zb-representable. From the above comments on the existence of Ya(p),
this network can't be passive, but a direct determination of this

through (4) seems hopeless.

By exciting t with pe a (t) we obtain, by (10) and (8),
exponential responses i and v for Lb-representable N. That is

e(t) = Eept yields (ha)

L(t) = lept (11b)

1(t) = Vept (Uc)

For such N we therefore extend the domain of definition further by

allowing [Vept , Iept]N. We can then work entirely with Laplace

transform quantities by defining the frequency domain network, N(p), as

N(p) = C[V(p), ICp)II [Vept, Iept] N) (12)

For the frequency domain network, time no longer appears and we work

with functions of the complex variable p. As is well-known, for

constraints which are represented by ordinary differential equations

with constant coefficients, N(p) is simpler than N to work with, since

the constraints become albegraic. The main advantage of such a

description probably shows up when synthesis is considered.

Example 3:
If we consider the network of Fig. 12, we see that N is

described by 4

de di d2 1
e+t = 2 1+t i+dt 2

2 I
•0- I I

+ II I
-I * I

L----

FIG. 12. NETWORK FOR EXAMPLE 3.
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I

Lettinig e(t) . Eept, i(t) = 1 pt gives

(l+p)z = (2+3P+2p 2 )I

Since

Ye(p) = (p+1)/(2p +3p+2)

we see from the Laplace transform interpretation, that a > -3/4

since the singularity furthest to the right is on the a = -3/4
line. Since e = v+i, N(p) is described by

2
[((2p +2p+l)/(p+l))I, I]eN(p)

for any complex I and a > = -3/4

Note that if a physical N is given, defined by (2), then N(p) is

unique, when it exists. Further, if N(p) is given such that Ya(p)

exists, then by finding the inverse Laplace transform, f [Ya(p)], and

using (8a), a physical network, N, is well-determined.

Limiting ourselves to the linear, time-invariant case, if

a < ar, N(p) is seen to form a vector space over the field of

functions of a complex variable defined in a I < a < a r, if we define

a[V, I] A [aV, aI]

and

[Y1, Il] + [_v2, 12 _ [_11+12, _.1+_I].2
As a result of the contraint defining N, we see that the vectors

[v, I] in N(p) form an r-dimensional sub-space of all possible vectors

[V, I]. If we arrange V and I in a 2nxl column matrix, [Y] then we
M

can find some matrix M(p) of complex functions defined in a1 < a < ar

an. of rank 2n-r and order mx2n, where m > 2n-r, such that

M(P)[VJ = 0 constrains V and I to N(p). If 2n-r > n, we choose

m = 2n-r while if 2n-r < n, we choose m = n such that N is nx2n.

Partioning M into M = [A, -B] then yields the fundamental equations

A(p)V(p) = B(p)_I(p) (13)
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These equations constrain ! and I to N(p) and thus describe N. Of

course the A and B are not unique, since N(p) can be premultiplied by

any nonsingular mm matrix, with a description of the form of (13)

still resulting. As is seen by the nullator and norator, these

equations can be used to describe other than solvable networks.

Further, for a given network (13) can be obtained in many ways. For

instance, as seen through (10a), A(p) and B(p) are essentially

Laplace transformed quantities and hence (13) can sometimes be

obtained by taking Laplace transforms of describing equations.

A more satisfying proof of (13) can be given if N is linear,

time-invariant, and solvable, as then

i = y,*e (8a)

v = [1 n-ya I*e (8b)

Convoluting (8a) by [51n-yaI on the left gives

[1n-Ya]*i = [ 1n-Ya]*yae = [ya-ya*ya]*e = ya*[51n-yal]*e = ya•*v

or

I = [81n'Ya5 *-i (14a)

Taking bilateral Laplace transforms

Ya(p)V = [in-Ya(p) ]I (14b)

This is again (13) with A and B explicitely evaluated; in fact

A and B are here nxn.

Example 4:

a) Consider the network of Fig. 13
C

T 'oT 2

FIG. 13. NETWORK FOR EXAMPLE 4s).
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The current flowing to the right through the capacitor is

ic = cd(vl-v,)/dt

The current i is
1

i -= -v 2 +cd(vl-v2 )/dt

while the current i is
2

i 2  vl-cd(vl-v2 )/dt

Letting v and i be of exponential form gives[ C 1 ] [ : : V 2 [r ] L b ']
This is (13) with A(p) taken as the admittance matrix. Note

however that

(PC -PiL- =

also describes the network since we have merely premultiplied by

[1 0
b) The nullator is described by

for which A and B are not square.

c) The norator is described by

[oi[v] = [o][1]
d) The transformer is described by

[-T 101[Vfj = [r 0l~

Note that, as with the nullator and norator no inverses exist

for A and B.

e) The voltage inversion negative impedance converter is defined

by
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By choosing A and B in different ways one can define new and

perhaps interesing linear, time-invariant networks. Pre-miltiplying

(13) by a non-singular matrix C(p) we get

CAV = CBI (15)

Properly choosing C gives the familiar network descriptions. For

instance the impedance, admittance, and (normalized) scattering matrices

can be, respectively, defined by

Z = AKB; C = A-' (16a)

Y = B'IA; C = B-1 (16b)

S = (B+A)'I(B-A); CA = 1n-S, CB = in+S (16c)

At this point we omit any physical interpretation of these and merely

point out that, since

X = (i n-2a)E = S(v+i) = Sq

by (16c) we have

S(p) = In-2ya(p) (i7)

As was shown before (11), every linear, time-invariant, solvable and

passive N possess a Ya(p) which is in fact analytic in a > 0 and exists

for almost all p = 3a. Consequently, by (17), we conclude the funda-

mental result that every linear, time-invariant, solvable, passive N

has a scattering matrix which is analytic in a > 0 and exists for

almost all p = JM.42

Equation (13) is generally only defined for a certain region in

the p plane, that for which the appropriate Laplace transform converges.

Whenever possible, we extend this region by analytically continuing

N(p) to the left and right. Since N(p) may then become multiple-valued,

whenever we meet a branch point a+Jp we make a linear branch cut to

-•+Jp, if on the left, or +-+Jp if on the right, and thus make N(p)

single-valued. For instance a branch point is met at p - 0 when
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considering the infinitely long R-L cable, with Z(p) 4 ./p originally

defined only in the right-half plans. This analytically continued

N(p) is identified with the original, since they both coincide in the

original domain of definition.

Natural frequencies are conveniently defined in terms of the

analytically continued N(p). p0 is called a short-circuit natural

frequency if (2, _(po)]N(po), _I(po),O. Piysically this means that

some nonzero exponential current can be forced into the (extended)

network when zero voltage appears across the terminals. For instance

a short-circuit has every Po as a short-circuit natural frequency.

From AV = BI we see that B(po) must be singular at a short-circuit

natural frequency and hence, if Z exists, (15a) shows that p0 is a

zero of the determinant of Z. The definition then corresponds to the

calculations normally made and generalizes that of "frequencies

present due to only initial conditions. 43 The definition also holds

for non-meromorphic Z matrices, for instance, for the infinitely long

R-L cable mentioned above, p = 0 is a short-circuit natural frequency.

Dually po is an open-circuit natural frequency if CV, O]eN(p 0 ) for

'(Po)•.

In synthesis it is easiest to work with passivity conditions in

terms of N(p) in place of the N of definition 3. Since, in the linear,

time-invariant, solvable case, after extending from 1I) to n , we
[Re pt eabirrl Nn +

can approximate any [Re Ve . Re _]e ]N arbitrarily closely by a

sequence of allowed pairs [j(t),_j(t)] for the original N, passivity

necessarily requires44

ep(t) = (Re VePt)(Re Iept)dT > 0 (18)

for all t and every [(, I]N(p) for every p in Re p> 0.

In many situations it is desirable to investigate the internal

structure of a network. For this we define the notion of a circuit.

Definition 9:

A circuit C is an interconnection of networks Ni, i = 1, ... , k.

By an interconnection is meant that the nl-vector of N1 , the
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n2-vectors of N2, etc., are interrelated by Kirchhoff's laws. Here

k is an integer or infinity. We can connect external leads to a

circuit such that looking in from the outside C looks like an n-port.

Of course C must be constructed at a creation time greater or equal to

the creation time of any of the interconnected networks. It should be

pointed out that a circuit can be closed upon itself, that is have no

terminals, as is seen by the circuit of Fig. 14.

FIG. 14. A CLOSED CIRCUIT.

The concept of a circuit allows us to conveniently look at finite

networks.

Definitiod 10:

N is finite if it can be constructed as a circuit consisting of

a finite number of the networks of Example 1 (resistors,

inductors, capacitors, transformers, gyrators).

In essence, a finite network is defined by an equivalence class

of circuits.45 Thus, if circuits, C1 and C2 have external leads

connected such that they define networks NC1 and NC , then we will1 2

call C1 and C2 equivalent (at the terminals), written C1742 , if

NC= NC2. For example, the circuits of Fig. 15a), assumed to have

tN = -M, are equivalent. However, the circuits of Fig. 15b), which

are assumed created at t. = 0 with different initial voltages, are not
equivalent. This latter result only seems reasonable, since their

responses to different excitations will be different.
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Sviol 0 viol 2
a*) b)

FIG. 15. ILLUSTRATION OF EQUIVALENT CIRCUITS.
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V. CONCLUSIONS

Using what appear to be the most basic ideas, an n-port has

been defined as well as the various types of properties that can be

possessed. In contrast to other such theories in the literature, such

an n-port can be nonlinear, time-varying or active. In the linear,

time-invariant, solvable cases the types of variables allowed can be

extended from infinitely differentiable vectors of support bounded on

the left to distributional n-vectors. The variables in many such

cases can. also be extended to be of exponential form, this always

being true in the passive case.

The definition of a network is different than commonly found.

That is, we don't define a network in terms of operators but as a

collection of pairs of variables. Our Justification for this is that

in the operator description, L[f] = g. the variables f are best

thought of as inputs while the A are to be considered as outputs.

However, for a network it seems that sometimes a variable will be used

as an input while at others times the same variable should be considered

as an output. For instance if a voltage source is applied to a resistor,

one naturally considers the voltage as the input and the current as the

output. But one can equally well apply a current source to the same

resistor in which case the current would be considered as the input.

It seems that the operator description is most appropriate in studying

control systems since, in L[f] = Z, one here would wish to control an

output i by the use of the input f. Of course we did use the operator

idea in the extension to distributional variables. This was done,

since we worked with the augmented network where we always considered

e as the excitation and either i or v as the response.

The definitions of network properties must be given in terms of

the original variables, in place of the distributional or exponential

variables, since otherwise meaningless results occur. For instance,

the energy integral Eq. (4) can't be evaluated for an impulse of

voltage on a capacitor. Further, an inductor would not look reciprocal,

since
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1I= u(t), vI = 18(t)

and

i2 = I= constant, v 2 = 0

are allowed with distributional and exponential extensions, but

18*1 = IýIO = O*U

if 4 0, '0 0

In several works in the literature it is postulated that a

network is something possessing the various properties of linearity,

time-invariance, passivity and sometimes solvability. However, it

seems to us that this is somewhat a misuse of the concept of a

postulate. It seems that what should be postulated is the existence

of physical devices subject to a mathematical description of the form

of Eq. (2), in the theory presented here. The various properties of

such a description can then be checked to see if the given network

possesses such a property, as passivity, say.

From working with the various definitions of part b), it seems

that most of these definitions are as desired. However, it may be

that some future considerations would require some sort of modifications.

For instance, the definition of solvable is important in the theory

of linear networks. Perhaps, though, there is some better concept

which contains that of solvability, which is needed for the study of

nonlinear networks. Similarly, reciprocity is defined for general

networks, but perhaps with more study it would become necessary to

restrict it to purely linear networks. Like-wise the definition of

lossless, which hasn't been worked with much, may not be the most

appropriate one.

The "network" associated with Fig. 1 raises interesting

questions. For instance by observing this, one wonders if perhaps

every linear, time-invariant, solvable N can't be made passive by

augmenting (as in Fig. 9) with sufficient resistance. If so, then it
F would appear that even for active networks, the Laplace transformj representation should converge in a right half-plane.i -31- &E-63-022



NOTES

1. See McMillan, [Ref. 11, and Raisbeck, [Ref. 2]. McMillan's

approach is closer to the work presented here than any other.

Raisbeck, although not quite so rigorous, is the starting point of

most recent studies. McMillan essentially assumes linearity,

time-invariance and reciprocity while Raisbeck assumes the

existence of an impedance matrix; both assume passivity.

2. See Youla, [Ref. 3], Zemanian, [Ref. 41, as well as Vnig, [Ref. 5].

These papers are all based upon the concept of a linear transforma-

tion. [Ref. 3] works in Hilbert space and gives an excellent but

abstract theory for the scattering matrix. [Ref. 4] works with

distributions with some interesting time domain results. [Ref. 5]

gives a rather coplicated theory but has some interesting

impedance representations.

3. See Newcomb, [Ref. 6]. This shows that by a suitable choice of the

operator domain of [Ref. 3], networks which one would normally

consider as passive, causal and single-valued, need not have these

properties.

4. See the second section of [Ref. 35].

5. Typical conjugate variables would be force and velocity, voltage

and current, temperature and entropy change. One wonders if such

a choice can be made for biological systems.

6. Intiuitively, by the support of a function of time, h(t), is

meant the set of t for which h(t) is non-zero. More precisely,

the support is the closure of the set of points in t for which

h(t)ýO, [Ref. 7, P. 17]. The support of a vector being bounded

means that the support of each entry of the vector is bounded.

7. We use the standard set theory symbols. That is, e denotes
"contained in", (- represents "intersection", and A = (xlP(x))

means that A is the set of all x such that the proposition P(x) is

satisfied.

We comment that feT+ rT T n can not be replaced by fe •) if
Ak Nn Nn

tN = -, since then f would not need to have support bounded on
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the left.
8. If a measured entity were not infinitely differentiable, infinite

values would be obtained by the use of differentiators. This

argument is not too solid, however, since ideal differentiators

don't exist. One feels that impulses aren't allowed since many

non-linear devices can't tolerate them.

9. If £ is given as the voltage vector we merely relabel.

10. We assume for simplicity and with Shelley, [Ref. 8, p. 8131, that

the universe has existed from eternity.

11. In german an n-port is called a 2n-pole with this nomenclature

being taken over into English by McMillan, [Ref. 1, p. 225].

McMillan's definition is the only precise one we know of in
English, but it holds only for finite networks. Certainly the

original use of the word port is imprecise, [Ref. 9]. See also

the IRE standard, [Ref. 10], [Ref. 11].

12. An interesting analog of the gyrator results from plasma physics.

For a charged particle of mass m. and charge q moving in a magnetic

field i with velocity v, we have d= q-vxi. If I is directed

only in the z direction with magnitude Bz, this gives

[0~/ 
qBz/m] [Vy1

where the cyclotron frequency oc = qBz/m is analogous to y and

represents the rate at which the particle gyrates around the B

field.

13. For microwave realizations of the gyrator see Lax, [Ref. 12,

p. 544]. For low frequency realizations see Bogert, [Ref. 13],

where active circuits are used.

14. See Carlin, [Ref. 14], where these degenerate networks form a

basis for a synthesis technique.

15. See Cauer, [Ref. 15, p. 161]. Cauer calls the k-terminal network

a "complete 2k-pole".
16. Note that the variables for the lower right terminal pair of

Fig. 5a) are uniquely determined from the other variables by
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the use of Kirchhoff's laws. If sources are only applied at the

ports of Fig. 5b) the transformers can be omitted and the network

redrawn as

T1T T

2 T3

17. The standard definition is in terms of operators, see Papoulis,

[Ref. 16, p. 82], or Youla, [Ref. 3, P. 106]. An alternate, but

somewhat complicated, definition in terms of the state has been

given by Zadeh, [Ref. 17]. This was slightly improved at a

later date, [Ref. 18], to include L-C networks. Essentially

Zadeh's definitions attempt to distinguish between linear

equations and linear systems. Thus in his terminology one system

could have different initial conditions, while in the theory we

present, the same "elements" with different initial conditions

define different systems. This latter viewpoint seems to be the

only consistent one when just terminal behavior is considered.

It does, however, have drawbacks when considering internal

construction.
18. If [I , 1 ]0 then for real aj and finite m,

M m

a aj, a • ]0N. However, for a linear N, this result

j=l j=l
apparently need not hold for infinite m. We could postulate

that it does hold for m = w, but none of the theory seems to be

changed by such an assumption.

19. The fact that homogeneity and additivity could be separately

violated was essentially proven by Gerald Alonzo in the Stanford

graduate course EE 235.
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20. Of course anyone would be silly to build Fig. 7b) using diodes.

Practically the diodes wouldn't be ideal anyway and the resistor

equivalence would only hold as an approximation. The example does

illustrate the fact stated, which would be taken as a weakness of

the definitions. Another example is given in [Ref. 171.

21. For the concept of a vector space see Birkhoff, [Ref. 19, p. 1621.

22. The standard definition for time-invariance can be found in

Papoulis, [Ref. 16, p. 83]. This essentially reads: A system is

time-invariant if g(t) is the response to f(t) then g(t-tl) is the

response to f(t-tl). Although the physical meaning of such a

definition is clear the mathematics is rather imprecise since, by

simply changing the variable, almost any system is (mathematically)

time-invariant).

23. Besides the definition given, others can be found. Shekel,

[Ref. 20, p. 269], defines a network as being passive if the

average power input in the sinusoidal steady state is positive.

This, however,, allows a resistive network containing a negative

capacitor as passive. Raisbeck, [Ref. 2, p. 15111, requires only

Loo) L(T)!(-r)dT > 0

This, however, seems to restrict v and i and since e(t) could be

negative for some t < - but still e(-) > 0, this doesn't seem

reasonable. Youla, [Ref. 3, p. 110], allows complex excitations

and responses and then defines

Pe(t) = ReL (r).i(T)dT

with a superscript asterisk the complex conjugate. We believe

that a more meaningful definition for complex valued variables

would be

Both of the latter e(t) agree with e(t) of (4) when the variables

are real.
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24. Youla, [Ref. 21], has shown that any realization of the nullator

using a finite number of the elements of example 1 must contain at

least one negative resistor and one gyrator. For this reason one

hesitates to call the nullator passive. In fact in early lectures

on this material the author inserted an extra clause in the

passivity definition to rule out nullators at any port. Such a

theory seems too ad hoc and we rely upon only the solvability

concept to rule the nullator out, when so desired.

25. See [Ref. 3, PP. 103 & 113]. Youla refers to the concept appear-

ing in two earlier works which we haven't seen as yet, those of

Wu and Toll. Essentially, solvability is assumed as a postulate

for a network in Youla's theory.

26. It seems to us that any truly physical device is solvable. This

is true for multiple-valued or hysteresis type characteristic

curves such as obtained for tunnel diodes or iron-core inductors.

If, for such devices, one knows the entire past history the device

will be in a unique "state" at any given instant.

27. These are easily established.

Linearity: For N a we have [a(, ai] = [av+aii]eNa since [a1, ail]N

for every a. Likewise [el+e_2, jl+_i2l = [_l+V2+ i l+]eNa

since [v1 +v 2, 1 +i2 ]kN by linearity of N.
Time-invariance: Consider [e, i] = [v+i, i]Na, then [v_ i]ex.

By the time-invariance of N, for r > 0, [Iv(t), i(t)] = IVo(t+v),
i (t+T)] for [yo, i ]eN. Therefore [e(t), i(t)]

io(t+r), i (t+T)] = [%e(t+T), i (t+')] where [e i-o = [v +i0 -0-0 00 --0--0
i ]eNa since [ ],yN-

Passivity: We have for Na

Sa(t) =L (v+i)idr = L .dT+ L lidr

The last term is always non-negative while the next to the last

term is, if N is passive.

28. See Ramo and Whinnery, [Ref. 22, p. 454], where Maxwell's equations

are shown to yield Lorentz reciprocity. The result of [Ref. 22]

is in terms of phasor quantities and thus we have replaced multi-
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plication by convolution to convert to the time domain. The first

real use of this result in a rigorous theory seems to be in

McMillan, [Ref. 1, p. 236].
29. Matrix convolution is defined by replacing multiplication by

convolution in the definition. Thus A*B is defined by

aik*b. For finite, linear, passive networks this agrees with

the usual statement that for a reciprocal network the ratio of

response to excitation is invariant to an interchange of the

points of excitation and observation, [Ref. 23, P. 14 8].

The definition we give is valid for nonlinear, time-variable or

active networks but it is not clear if it is meaningful then. The

definition does make the following network nonreciprocal, since

-; *i -;:i = E:*i 1 +i 2 -il-iL 2 J
'1=2-2-= 122 2 1 11

1 1

TI o A * T2

T' T

Note that if the current "excitations" for measurements one and

two are the same, this network would look reciprocal (for these

excitations). In fact any reciprocal, solvable 1-port is linear

since, with i = e-v, ;i*1 = v *(e 2 -v) = ' 2*(el-Zl) requires with

e1 = ae [7r-a~rJ*e =0 or for the 1-port =" = av1 and. i= a8i1

are in N. Similarly with e3 =-112'*i = -** `l3z3) =
S;S*(_-_vi)_ or v *e = v *e and similarly v *e = v*e adding

) -1 -3 -3 -i -`2 ---3 32

gives (Pl+-- )*(e ) = 0 or for the 1-port [ ,1 .2, !L+!]N

and hence N is linear. It is not clear if such is the case for

n-ports.
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Sometimes a reciprocal network is called "bilateral," [Ref. 24.,

P. 875]. Although we have never seen a precise technical defini-

tion of the word bilateral, we would prefer to apply it exclusively

to 1-ports meaning that current passes in the same manner into or

out of a device. The ideal diode would not be bilateral and the

concept couldn't be meaningfully applied to the gyrator.

30. Here 0 is the n-vector of zeros.

A typical definition of causal is given in Youla, [Ref. 3, P. 111].

The definition so given allows the open circuit as causal but not

the dual network, a short-circuit. For this reason our definition

has two clauses. In [Ref. 3, p. 111] it is "proven" that "except

in pathological cases, linearity and passivity imply causality".

However, as shown in [Ref. 61 we believe this only to be the case

when a proper interpretation of the concepts is used. Thus we

essentially assume some sort of "causality" by restricting N to v

and i in 1D . An excellent discussion of causality versus

antecedance is contained in Bunge, [Ref. 25].

A definition differing from that of Youla, but somewhat more

common, is that given by Papoulis, [Ref. 16, p. 85]. This

requires the output to be zero until t if the input is zero0

until t . Youla's requires that if vI = v 2 for t < t then

iI = i for t < t . In definition 6 the existence of [0,1 i and

[v, 01 is needed to be able to consider a) and b). Without such

a clause one couldn't consider the non-antecedal 2-port.

1 11cz

31. Here L2n is the set of real-valued square integrable n-vectors.

That is feL2n if

<C

It seems that an alternate definition in terms of conservative

syste-s, as studied in mechanics, (Ref. 26, pp. 3 & 347], could

be given. However, it also seems that such existing theories
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don't have the complete generality contained in the concept of a
network. Definition 8 is essentially that given by Youla,

[Ref. 3, P. 119].

32. Except for the subscript n, the notation is the standard one

found in Schwartz, [Ref. T, p. 25]. The fact that D) is dense
+nin •D' follows in a manner similar to Schwartz, [Ref. 7, p. 75].

A simpler proof follows from Schwartz, [Ref. 27, p. 22]. Thus
let a sequence of infinitely differentiable functions, (p, of • 1

converge to 5, cp,-. where b is the unit impulse. Then, for any

distribution fe +1 we can form (P*f and cp*f-o*f = f. Since

*f is in T+1' this gives the desired result, after extending

to n-vectors in an obvious manner (component by component).
233. The impossibility of defining 5 as a distribution is shown In

Schwartz, [Ref. 7, P. 117]. K1nig has shown how the concept of a

distribution can be extended, such that 62 is defined, [Ref. 28,

p. 448]. However, 6.u/u.6 under this definition.
34. See Schwartz, [Ref. 27, p. 18 theorem X and p. 20], which states:

Every linear continuous operation from either P' or 5D into 1',

commuting with differentiation, is the convolution L(T) = S*T

with a fixed distribution SE P' and reciprocally. This gives a

rigorous justification of the physical result that the response

of a linear, time-invariant system is found by convoluting the

impulse response with the actual input.

Schwartz's result is not for the matrix case, but by considering

separate components of e and I, it is seen to yield the matrix ya-

35. At this point, at least when n = 1, it is possible to set up a

Mikusifiski s algebra, [Ref. 29], since the algebra 01)' has no+1

divisors of zero, [Ref. 27, p. 29]. This allows us to work with

more general networks than those later called Lb-representable.

Of course (8) yields the same [v, iL pairs which originally

defined the network, by the definition of Y .

36. See Schwartz, [Ref. 27, p. 57, theorem XXV], where it is shown

that: In order for a distribution T to belong to TL it isL
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necessary and sufficient that, for any a 4, cOT*gL , recall that
Go

feLp if If(t)jPdt < a

37. We could have simply obtained Ye(p) by taking the Laplace trans-

form of (8a). We feel that the physical insight of Ya(p) being

the response coefficient in (10a) for exponential excitations

lends motivation to the heavy use of the Laplace transform in

engineering work. The approach used follows that of Mason and

Zimmerman. [Ref. 30, p. 3401.

38. Choosing t < 0 in Eq. (1-9) would give
t t~

0 =Lý (Gq) (a*ýv)dr+L (am*'O(a*ýi)dT+2L (00:v) (0:*i)d-r

But each term on the right must be non-negative, by passivity or

the sum of squares, and hence zero.

39. See Widder, [Ref. 31, p. 80, theorem 101. The theorem reads:

If f(t) belongs to L2 in (0, cc) then
(2) RIt.iI. M. f(t)e'Ptdt

exists for a > 0 and defines a function F(p) which is analytic

for o > 0. Moreover

F(p) = f(t)e ptdt( 0> 0)

the integral converging absolutely for a > 0 and

h~e 7(.a+jw) -= w

40. This is obtained as follows. Letting vc be the voltage

across the capacitor, plus at the top, Kirchhoff's voltage law

gives e = i+2(di/dt)+ve. Letting ic and ir be the current down

through the right hand capacitor and resistor gives, by

Kirchhoff's current law,

i = i r+i, dv/dt = ic, vc = ir

Therefore i = vc+dvc/dt. Solving the equation in e for vc,

adding this to itself differentiated and equating to i gives the

desired result.
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41. For the concept of a vector space see HalmoQ; [Ref. 32, P. 3], or

Birkhoff and MacLane, [Ref. 19, p. 162].

42. It is also true that for a > 0, 8*(p) = S(p*). This results from

exciting N with e =Eept and e2 = Bep*t with Z real. Then
il1(t) = ya(p)_Eept-and L2(t) = ya( *)§eP~t are the correspondin

currents. Conjugating i 2 (t) we get

.12*(t) = Ya*(P*)Ee

but this must be i 1 (t) as it is the response to e 1 . Thus, since

E was arbitrary

Ya(p) = Ya*(p*

which gives the above stated result for S(p). Z and Y are also

analytic in a > 0 whenever they exist, since for instance

Z = (1n+S)(in-S)'l

and Z becomes non-analytic in a > 0 only where (ln-S) is singular,

but (ln-S) is non-singular everywhere in a > 0 if Z exists (for a

passive network), [Ref. 3, P. 119].

43. We comment that in the extension to exponential excitations, terms

of the forms e pl+ep2tJ, pp 2 , haven't been allowed. This means

that the separate natural frequencies can be individually con-

sidered. For instance in working with (17) we don't have to kill

off natural frequency terms by a suitable choice of initial condi-

tions, as is sometimes done, [Ref. 33, p. 418].

44. To see this form

J [(er)eLP)Ij(T!jT) L Re(_!ePr)Re( iePI)dT

ti

. where t is the left bound on the support of I and i .
J __

choosing ti-- with a > 0, by time-invariance, the second integral

Stends to zero, while the first integral does also, since v i

approximate the exponentials. Thus
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for every finite t and hence ep(t) ? 0 as 9j(t)> >O. Note that

the second integral on the right won't tend to zero if a < 0.

Letting V, = jViejdVi, I, = II±IeJ'i,
(18) becomes

tn

=Ref ea + e e2p]dr

1 R[e -'- J ]e2a t

ar p
Letting t-m through instants when the second term assumes its

"minimum" requires, as a > 0
Re (fil - ,ln I ot ? if 40

or
(Re V))(Re I) > 0 if 0

By choosing real V and I and combining terms, this latter requires

Re _I > 0 for w = 0 and thus a passive network necessarily has

Q(p) > 0 for a > 0 where

Re (I I) - I•II_ if o -= 0
Q(p) =

e _e *I if to = 0

Clearly this requires Re !*I > 0 in a > 0 or if Y exists

Re[V YVI > 0 in a > 0 (for any complex V), which is the essential

positive real condition. Writing
Re *I= 1[VI + _*% 'I ['VI + T*I + YV + Y*V]

_- I -_ Y+ _ V*• v + _ Y-• -_* L• _
-~ 1ý +L I] [V{n•*•- I] >1 0

= + T]*(1n-6*3-0 + I] > 0
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by the reasoning above (1T). Thus we know that every linear,
time-invariant, solvable N has a scatt•ering matrix S(p) and

1) s(p) is anlyic in a > 0
2) s*(p) -s(P*) in a > 0

3) ln-W(p)s(p) in a > 0

If S is rational and satisfies these conditions it can be

synthesized by known methods, [Ref. 34].
45. The relation CIfC2 is a true equivalence relation, see [Ref. 19,

p. 1553. That is

CI•C 2 implies C2•G1

C1 CO2, c..C3 implies C1 _C3

46. (Added in proof) This is not the case as the following counter-

examples, which we previously exhibited, show, [Ref. 36, P. 36].

For this let z(p)= p2 or Z(p) [op 0].
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